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1 Introduction
In this part of the notes, we focus on algorithms for problems on graphs. Graphs are some of the
most fundamental and important structures in computer science. As a result, graph algorithms
have many applications, both in their own right, and as subroutines in other algorithms.

Throughout, we follow notation in our introduction to graphs in Section 4, Part I, letting G =
(V,E,w) be a weighted graph with vertices V and edges E ∈ V × V . If the weights w are
unspecified, they are assumed to all be 1, in which case G is unweighted. We specify in context
whether G is directed or undirected. We always assume G is simple (i.e., has no parallel edges
or self-loops), and is given as an input in adjacency list format (see Section 4.3, Part I). Unless
otherwise specified, n := |V | and m := |E| refer to the vertex and edge counts of G.

We have already seen several graph algorithms, e.g., single-source shortest paths on DAGs and
all-pairs shortest paths (Sections 5.2 and 5.3, Part III), and minimum spanning trees (Section
4.1, Part IV). One recurring theme in these examples is the interplay between general algorithmic
paradigms (e.g., data structures, and principles of recursion, DP, and greedy) with graph structure.

The MST algorithm in Section 4.1, Part IV is particularly illustrative of this theme. First of all,
we designed and analyzed it by adopting a “greedy stays ahead” perspective. This perspective was
fueled by an exchange lemma (Lemma 3, Part IV), that crucially used a characterization of the
number of connected components in a forest being inversely related to its number of edges (Lemma
16, Part I). Secondly, we gave an efficient implementation by developing a data structure repre-
sentation of the forest built by the algorithm. This data structure (stored in an Array) maintained
the connected component each vertex belonged to throughout the course of the algorithm.

Let us give another example where implementation details can make a big difference in performance.
The goal of Algorithm 1, a generic graph search algorithm, is to determine all vertices t that are
reachable from a specified source vertex s, i.e., such that s = t or there is a path from s to t in G.

We give a brief proof of correctness for Algorithm 1.

Lemma 1. Let R be the output of Algorithm 1 on directed or undirected graph G = (V,E) and
s ∈ V . Then for all v ∈ V , we have R[v] = True iff v is reachable from s.

Proof. Call a vertex v ∈ V marked if R[v] = True at the end of the algorithm. We first prove
that all marked vertices are reachable from s. Observe that each R[v] is set to True on Line 11 at
most once, because it is set to True only if it was previously False on Line 10. Therefore, we can
prove our claim for all marked v by induction over the order where R[v] was set to True.

The first time a vertex v has R[v] set to True, v is the source vertex s, which is indeed reachable
from s. For any other marked vertex u, u was at some point added to S in Line 13, as the neighbor
of another marked vertex v. However, R[v] was set to True by this point, so by induction, v is
reachable from s. Finally, the existence of the edge (v, u) implies u is also reachable from s.

Finally, we prove that if u is reachable from s, then it is marked. We induct over the shortest
path distance from s to u; this distance is at most n − 1, as shortest paths cannot include any
cycles, else we could remove the cycle and obtain a shorter path. If this distance is 0, then v = s
and R[s] = True. Otherwise, let v be the second-to-last vertex on the shortest path from s to
u, so that the path includes (v, u). There is a shorter path from s to v, so by induction, we have
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Algorithm 1: GraphSearch(G, s)

1 Input: G = (V,E), a graph, s ∈ V , a source vertex
2 S ← {s}
3 R← Array.Init(n) // Reachable vertices from s.
4 for v ∈ V do
5 R[v]← False
6 end
7 while S 6= ∅ do
8 v ← element of S
9 S ← S \ v

10 if R[v] == False then
11 R[v]← True // Mark v as reachable.
12 for (v, u) ∈ E do
13 S ← S ∪ {u}
14 end
15 end
16 end
17 return R

R[v] = True. When R[v] is marked True on Line 11, u is then immediately added to S on Line 13.
Thus, u will later be removed from S, and R[u] will be set to True, completing the induction.

Notice that in proving Lemma 1, we made no assumptions about how Lines 8, 9, and 13 in the
algorithm were implemented. In particular, even if the vertices in S can be arbitrarily ordered
upon addition and removal, Lemma 1 remains true. In Section 2, we explore two implementation
choices by means of using different data structures, and the consquences of these choices.

2 Search
In this section we consider details of implementing Algorithm 1, as well as their consequences on
its performance guarantees. To begin, we claim that using a Queue or Stack to maintain the set S
throughout the loop on Lines 7 to 16 results in an O(m) runtime, where m := |E|.

First, recall that both a Stack and a Queue maintain a set, supporting both insertion and removal
of an element from the set in O(1) time. Moreover, we claim that at most 2m elements ever enter
S throughout the algorithm. This is because each edge (v, u) causes a vertex u to be added on
Line 13 exactly once, when v is marked True for the first time on Line 11. This causes one element
addition per directed edge, and two element additions per undirected edge.

Thus the total runtime cost of the O(m) runs of Lines 10 to 15 using a Stack or a Queue to support
element insertion is O(m). Similarly, the total cost of Lines 8 to 9 using a Stack or Queue is O(m),
since they can only happen as many times as there are elements added to S. In Sections 2.1 and 2.2,
we respectively implement Algorithm 1 with a Queue and a Stack. This decision has significant
implications, yielding the breadth-first search (BFS) and depth-first search (DFS) algorithms.

2.1 Breadth-first search
Breadth-first search is perhaps the most intuitive variant of graph search. We explore several
applications that augment the basic variant of BFS which runs Algorithm 1 using a Queue.

Unweighted shortest paths. Beyond reachability, the most famous application of BFS is com-
puting shortest paths in an unweighted graph. Concretely, suppose an (undirected or directed
graph) G = (V,E) is given as input, along with a source vertex s. For every vertex t ∈ V that is
reachable from s, we wish to determine the shortest path distance between s and t, i.e., the length
of the shortest s-t path. If t is unreachable from s, we define the shortest path distance to be ∞.

Earlier, we proved in Lemma 1 that Algorithm 1 marks each vertex v ∈ V at most once, and it
marks precisely the reachable vertices. We claim that a stronger fact holds when Algorithm 1 is
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implemented with a Queue, as summarized by the pseudocode in Algorithm 2.

Algorithm 2: BFS(G, s)

1 Input: G = (V,E), a graph, s ∈ V , a source vertex
2 S ← Queue.Init()
3 D ← Array.Init(n) // Shortest path distances from s.
4 for v ∈ V do
5 D[v]←∞
6 end
7 S.Enqueue((None, s))
8 while |S| > 0 do
9 (p, v)← S.Dequeue()

10 if D[v] ==∞ then
11 if p 6= None then
12 D[v]← D[p] + 1 // Mark shortest path distance of v.
13 end
14 else
15 D[v]← 0 // Only applies to the source s.
16 end
17 for (v, u) ∈ E do
18 S.Enqueue((v, u))
19 end
20 end
21 end
22 return D

Lemma 2. Let D be the output of Algorithm 2 on directed or undirected graph G = (V,E) and
s ∈ V . Then for all v ∈ V , D[v] is the length of the shortest path distance between s and v.

Proof. We first briefly summarize the differences between Algorithms 1 and 2. Every time a vertex
u would be added to S on Line 13 of Algorithm 1, we instead add the entire edge (v, u) (including
the information of the parent vertex v) to the Queue in Algorithm 2. Otherwise, the only difference
is that rather than maintaining the reachability status of vertices, we maintain an Array D which
stores shortest path distances. We now argue that these shortest path distances are indeed correct.

If v ∈ V is unreachable from s, D[v] is never updated on Line 12, for the same reason that R[v] was
not updated in Line 11 as argued in Lemma 1. As D[v]←∞ initially, the final value is correct.

Otherwise, for all i ∈ [n − 1], let Ri be the set of vertices whose shortest path distance from s
is exactly i. We claim that vertices are added to the queue for the first time in the following
order: all of R0 is added first, then all of R1, and so on. We prove this by strong induction. The
base case is that R0 = {s} is the first vertex added, which is true. Now suppose that vertices in
R0, R1, . . . , Ri have been added to the queue in that order. Consider the vertices u ∈ V enqueued
with v ∈ Ri as (v, u) on Line 18 after each v ∈ Ri is dequeued for the first time. These vertices
have a shortest path distance of at most i + 1, because they are reachable from v ∈ Ri. If u’s
shortest path distance was ≤ i, it would have already been added by the inductive hypothesis. In
the other case, u ∈ Ri+1 is indeed added to the queue for the first time, as claimed.

We can thus inductively prove that D[u] is the shortest path distance in the order vertices are
queued. The base case is D[s] = 0, since s is the first vertex queued. Our earlier argument shows
that the first time any other u ∈ Ri+1 is queued, it is added as a pair (v, u) where v ∈ Ri. By
induction we had correctly memoizedD[v] = i, and thus we will correctly computeD[u] = i+1.

Intuitively, Lemma 2 shows that BFS maintains a “frontier” of reachable vertices that it slowly
grows. This frontier begins with s (the only vertex with shortest path distance 0), then adds all
neighbors of s (at distance 1), then adds all their neighbors, and so on. Each frontier may include
some vertices that we have already visited, but by performing the check in Line 10, we make sure
that we only update distances the first time a vertex is visited (i.e., on the frontier).
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Connected components. Another notable application of BFS is its use in computing the con-
nected components of an undirected graph, defined in Section 4.2, Part I. Briefly, s and t belong to
the same connected component if they are connected, i.e., there exists an s-t path. For undirected
graphs, connectivity is an equivalence relation: it is reflexive, symmetric, and transitive. It is
reflexive because every vertex is reachable from itself, it is symmetric because undirected s-t paths
are also undirected t-s paths, and it is transitive because if t is reachable from s and u from t,
then concatenating the paths shows that u is reachable from s. It is a standard fact that any
equivalence relation partitions a set into equivalence classes. When connectivity is the relation,
the set is V , the vertices of an undirected graph G = (V,E), and the equivalence classes are G’s
connected components. Note that connectivity is not an equivalence relation in directed graphs,
due to the lack of symmetry: we cannot reverse a directed path in general.

We have already argued BFS runs in O(m) time, but we can say something stronger: it runs in
O(mCs

) time, where Cs ⊆ V is the connected component of G that s belongs to, and mCs
is

the number of edges with both endpoints in Cs. This is because the only edges encountered in
Algorithm 2 are between vertices in Cs, so we do not need to account for edges in other components.

This fact implies a simple algorithm for computing the connected components of G. First, take
an arbitrary vertex s ∈ V and run Algorithm 2 with this source vertex. Next, mark all vertices v
that Algorithm 2 computes as being reachable from s as belonging to the connected component of
s. We can then recurse with an arbitrary unmarked vertex.1 The total runtime of this process is
proportional to the sum of edge counts across all connected components, i.e., the total number of
edges. Thus, we can compute all connected components in O(m + n) time.

2.2 Depth-first search
Depth-first search is a graph search alternative implemented using a Stack rather than a Queue.
This variant can be considered the more “aggressive” search algorithm: rather than waiting to
complete each reachability frontier before moving onto the next, DFS searches through entire
subgraphs at a time before backtracking. We will show that this makes several graph primitives
we have discussed previously implementable, such as topologically sorting a DAG.

Unlike BFS, there is a natural way to write DFS recursively that performs identically to imple-
menting Algorithm 1 with a Stack. However, as we will soon see, this recursive implementation of
DFS has a major benefit: it lets us explicitly mark when the recursive DFS call at a given vertex
has completed. We give both the iterative and recursive DFS variants here as Algorithms 3 and 4.

Algorithm 3: DFSIterative(G, s)

1 Input: G = (V,E), a graph, s ∈ V , a source vertex
2 S ← Stack.Init()
3 R← Array.Init(n) // Reachable vertices from s.
4 for v ∈ V do
5 R[v]← False
6 end
7 while |S| > 0 do
8 v ← S.Pop()
9 if R[v] == False then

10 R[v]← True // Mark v as reachable.
11 for (v, u) ∈ E do
12 S.Push(u)
13 end
14 end
15 end
16 return R

We can check that Algorithms 3 and 4 (with the input R set to the all-False Array) have exactly
1Formally, we can index the vertices, start with s ← 1, and maintain a pointer to the smallest unmarked index

to initialize the next call to Algorithm 2. The pointer makes one pass through the vertices, so this adds O(n) time.
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Algorithm 4: DFSRecursive(G, s,R)

1 Input: G = (V,E), a graph, s ∈ V , a source vertex, R, a length-n Array
2 if R[s] == False then
3 R[s]← True // Mark v as reachable.
4 for (s, u) ∈ E do
5 R← DFSRecursive(G, u,R) // Update reachable vertices upon recursing.
6 end
7 end
8 return R

the same performance. Rather than maintaining S iteratively, Algorithm 4 directly peels off each
added vertex and calls DFSRecursive recursively on it, if it has not been explored previously.

Postordering. A key concept related to DFS is the preordering and postordering of vertices.
Informally, DFS iteratively pushes vertices on top of a stack, so that the next vertex explored is
the one most recently pushed to the top. We can also imagine that vertices leave the DFS stack
when their subtree in the DFS search is fully explored. This happens when either a vertex has no
unsearched neighbors, or its last remaining neighbor added to the stack has completed its search.

The preordering of vertices is simply the order in which vertices are added to the stack for the first
time (i.e., sorting by starting times). Conversely, the postordering is the order in which vertices
leave the stack (i.e., sorting by finish times). Because the postordering is more useful to our
exposition, we only explain how to compute it in this section via Algorithm 5, a modification of
Algorithm 4, but it is similarly straightforward to modify Algorithm 4 to compute a preordering.

Algorithm 5: Postorder(G, s,R, T, i)

1 Input: G = (V,E), a graph, s ∈ V , a source vertex, R, T , length-n Arrays, i ∈ N
2 if R[s] == False then
3 R[s]← True
4 for (s, u) ∈ E do
5 (R, T, i)← DFSRecursive(G, u,R, T, i)

6 end
7 i← i + 1 // Increment time counter.
8 T [s]← i // Record finish time of s.

9 end
10 return (R, T, i)

We now explain our modifications in Algorithm 5, compared to Algorithm 4. We include two
additional parameters: T , which records the finish times of all vertices which have left the recursion
stack, and i, a time counter. Whenever a vertex completes its recursive call (Lines 4 to 6), we
increment the time counter i on Line 7 and record that the vertex has left the stack at the new
time on Line 8. Thus, if Algorithm 5 is called with R set to the all-False Array, T set to an empty
Array, and i← 1 as inputs, it will return the finish times of all vertices in T .

It is straightforward to check that these augmentations do not change the runtime of DFS asymp-
totically; namely, Algorithm 5 still runs in time O(mRs

+nRs
), where nRs

is the number of vertices
reachable from s, and mRs is the number of edges that lie on a path from s. This is because we
only record a finish time and increment the time counter at most once per explored vertex.

We also remark that a preordering of reachable vertices from s can be computed by marking the
order in which Line 3 completes for each vertex, also at no runtime overhead to Algorithm 5.

We now record one important lemma about the postordering computed by Algorithm 5.

Lemma 3. Let T be the output of Algorithm 5 on directed graph G = (V,E) and s ∈ V . Then for
(u, v) ∈ E such that u, v are both reachable from s, if T [u] < T [v], then there is a path from v to u.

Proof. Consider the status of the recursion when R[u] ← True is set on Line 3, which happens
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on a recursive call of the form Postorder(G, u,R, T, i). There are three cases: the recursive call to
Postorder(G, v,R, T, i) has not yet started, it has completed, or it is in the middle of executing.

If Postorder(G, v,R, T, i) has not yet started, then R[v] = False at this time. Thus v will be
added to the stack immediately after u is visited. Moreover, as a subroutine of u’s recursive call
to Postorder, v will leave the stack before u leaves the stack. Thus, T [u] > T [v] as v finishes first.
This case hence does not apply, because the premise T [u] < T [v] is false.

If Postorder(G, v,R, T, i) has completed, i.e., v has exited the stack, then again T [u] > T [v], because
the loop through u’s neighbors has just begun executing and thus u has not finished. Thus we can
also not be in this case given the premise of the lemma.

This leaves only the third case, where Postorder(G, v,R, T, i) has been called but has not completed.
This means that u belongs to the recursive exploration process starting from v, as v has not yet
exited the stack. Thus, whenever T [u] < T [v], there is a path from v to u as claimed.

Incidentally, the three types of edges in Lemma 3’s proof are sometimes referred to as forward
edges, cross edges, and back edges respectively, due to how they appear in the DFS traversal.

Topological sort. Recall that a directed graph is called a DAG if it has no cycles. We claimed in
Section 5.2, Part III that the vertices of a directed graph G = (V,E) can be topologically ordered,
i.e., so that every edge (i, j) ∈ E has i < j, iff G is a DAG. However, we only proved one direction
at the time (that a topological ordering of G means that G is a DAG).

We use the following lemma with Lemma 3 to topologically sort a DAG in linear time.

Lemma 4. Every DAG G = (V,E) has at least one vertex with no incoming edges and one vertex
with no outgoing edges.

Proof. Suppose for contradiction that every vertex of G has an incoming edge. Continuing to
follow incoming edges eventually causes a cycle, since there are only finitely many vertices. This
contradicts G being a DAG. A similar contradiction occurs if all vertices have outgoing edges.

Thus, let s ∈ V be a vertex with no incoming edges, which we can find in O(n) time. We claim that
if G is a DAG, running Algorithm 5 and reversing the postordering T yields a topological order
of all vertices reachable from s. To see this, suppose that (u, v) ∈ E and u, v are both reachable
from s. Then we claim u appears before v in the topological order. Suppose for contradiction this
was not the case. Then T [u] < T [v] (because the topological order reverses T ), so Lemma 3 shows
there is a path from v to u. This creates a cycle, contradicting that G is a DAG, so we are done.

If not all of V is reachable from s, then we can simply iterate on any unreached vertices. The total
runtime of all calls to Algorithm 5 is O(m + n), analogous to our argument in Section 2.1.

Finally, we remark that DFS can be used to check whether a given directed graph G is a DAG.2
Indeed, we can simply attempt to run the topological ordering algorithm described earlier. If G
is a DAG, then the topological ordering will be valid as we proved. Conversely, if the graph is
not acyclic, then no topological ordering will be valid, by Lemma 2, Part III. We can thus verify
whether i < j for each (i, j) ∈ E actually holds with respect to the computed ordering.

Strongly connected components. In Section 2.1, we described the connectivity structure of
undirected graphs: a partition of the vertices into equivalence classes (connected components),
such that each two vertices in the same component are connected, and there are no edges going
between components. We now describe the connectivity structure of directed graphs.

The key issue with our previous notion of connectivity is that it is not an equivalence relation
anymore for directed graphs, because it fails to satisfy symmetry. We circumvent this by simply
defining a stronger equivalence notion, strong connectivity. We say that vertices s and t of directed
graph G are strongly connected if t is reachable from s and s is reachable from t. We call all of
the vertices that are strongly connected to a vertex s the strongly connected component (SCC) of
s. As before, vertices of any directed graph can be partitioned into SCCs.

2The undirected variant of this problem amounts to checking whether a graph is a forest, which can be checked
by computing all connected components as in Section 2.1, and counting their edges to ensure components are trees.
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However, unlike undirected graphs, there could be edges between SCCs. It is thus helpful to
introduce a new representation of a graph to visualize the overall structure. We can associate with
each directed graph G = (V,E) a “SCC graph” SCC(G) as follows. Let the SCCs of G be {Ci}i∈[k]
for k ≥ 1. Then, SCC(G) has k vertices, corresponding to the k SCCs of G. We add a directed
edge from vertex i to vertex j in SCC(G) if there are any edges from Ci to Cj in G.

We claim SCC(G) is always a DAG. To see this, suppose there was a cycle between vertices
{i1, i2, . . . , ij} in SCC(G). Then there are edges between each consecutive pair of the SCCs
Ci1 , Ci2 , . . . , Cij . We claim this means that all of these SCCs are actually part of a single big-
ger SCC, a contradiction. This is because every vertex u in some SCC Cia can reach any other
vertex v in a different SCC Cib by following cycle edges from any vertex in Cia (all of which are
strongly connected to u) to any vertex in Cib (all of which are strongly connected to v).

Thus, every directed graph G is a DAG over SCCs. By Lemma 4, there exists a vertex in SCC(G)
with no incoming edges. We call the SCC corresponding to this vertex a source component, and
in particular no vertex in this SCC is reachable from any other SCC. Similarly, if a SCC has no
outgoing edges to any other SCC, we call it a sink component. The set of vertices that is reachable
from a vertex s ∈ V has a concise description: it is all vertices in Ci, the SCC of s, as well as all
vertices in every SCC Cj such that j is reachable from i in the graph SCC(G).

This gives a simple algorithm for computing SCCs. We can identify a vertex s in a sink component
Cs, and run Algorithm 3 (or Algorithm 4) to find all reachable vertices from s, which is just Cs

and nothing more. This takes time O(mCs
) because no other edges outside Cs are used. We can

then recurse on any vertex in a sink component in SCC(G) with the vertex corresponding to Cs

removed, peeling off one SCC at a time. Assuming that we can repeatedly find a vertex in a sink
component, the total time needed to run Algorithm 3 across all SCCs is O(m).

How do we find a vertex in a sink component? The following algorithm, due to Kosaraju and
Sharir [Sha81], works. Let rev(G) be G with all edges reversed, i.e., for every edge (i, j) in G,
there is an edge (j, i) in rev(G). Then repeatedly run Algorithm 5 on vertices in rev(G) until all
vertices are discovered. This forms a total postordering T of all vertices based on when their call
to Algorithm 5 returns. We claim v, the last vertex in T , is in a sink component of G.

Why is this? An equivalent claim is that v lies in a source component of rev(G). Because v is the
last vertex to have its call to Algorithm 5 complete, the last “top-layer” call to Algorithm 5 is to
v. No call on a vertex in any other SCC can reach a source component, so the last top-layer call
must be on a vertex in a source component. More generally, the last vertex in any postordering
always lies in a source component by a similar argument, even after deleting some SCCs.

Now we can describe the Kosaraju-Sharir algorithm in full. First repeatedly run Algorithm 5 on
rev(G) to form T , a postordering of all vertices. Then repeatedly remove the last unvisited vertex
according to T , and call DFS on it, marking all newly visited vertices. By our earlier argument,
every time we repeat this process, we discover a sink component of G and explore no other SCCs.
The overall algorithm for finding all SCCs takes O(m + n) time.

3 Shortest paths
In Section 2, we focused on search algorithms and their applications. One application in Section 2.1
was computing single-source shortest paths (SSSP) on unweighted graphs in O(m + n) time. In
fact, we have already seen several other shortest path algorithms in Part III of the notes. There,
we gave an SSSP algorithm for (possibly weighted) DAGs, also requiring O(m + n) time.

We also gave several algorithms for the APSP (all-pairs shortest paths) problem in Part III,
concluding with the Floyd-Warshall algorithm, which has an O(n3) runtime. In fact, Floyd-
Warshall is essentially still the best-known APSP algorithm, and as we will discuss in Part VIII,
this is believed to be unimprovable by polynomial factors, under a popular conjecture.3

In this section, we return to the SSSP problem and develop algorithms for it in full generality,
i.e., on graphs that may be weighted and contain cycles. We begin by discussing graphs with only
positive weight edges in Section 3.1, and handle the most general case in Section 3.2.

3However, mild gains are possible: a breakthrough by [Wil21] gave a 2
√

log(n) = no(1) factor improvement.
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3.1 Dijkstra
In this section, let G = (V,E,w), such that all edge weights w are positive, i.e., w ∈ RE

>0.4 We
give an algorithm that solves SSSP on G: given a source vertex s ∈ V , compute the shortest path
distance from s to every t ∈ V . As in Section 5, Part III, we define the shortest path distance by

d(s, t) := min
P is a path from s→t

P⊆E

∑
e∈P

we. (1)

If t is not reachable from s, we define d(s, t) = ∞. Because we can always run, e.g., Algorithm 3
to solve reachability first and label unreachable vertices with a distance of ∞, let us assume for
simplicity in this discussion that all vertices in V are reachable from s.

We present Dijkstra’s algorithm for solving SSSP on graphs with positive edge weights, which
combines two main ideas: relaxing tense edges, and priority queues. Let us briefly explain each.

The first idea, relaxing tense edges, assumes that we maintain labels D[t] for every vertex t ∈ V ,
such that D[t] is an overestimate of d(s, t). An easy way to guarantee this is to always maintain
that D[t] is the total weight of some s-t path, so that it is always larger than the shortest s-t path
weight, i.e., d(s, t). Now consider some edge (u, t) with t as the tail. We say that the edge is tense
if the following condition holds: D[t] > D[u] + w(u,t). If this is the case, we claim that D[t] is
“obviously” improvable: by the assumption that D[u] ≥ d(s, u),

d(s, t) ≤ d(s, u) + w(u,t) ≤ D[u] + w(u,t), (2)

because appending the edge (u, t) to the shortest s-u path gives a valid s-t path, and d(s, t) can
only be smaller. Thus, we can improve our overestimate D[t] by performing the following update:

D[t]← min(D[t], D[u] + w(u,t)). (3)

The update (3) is called relaxing the edge (u, t), and is valid to perform with any overestimates
D. In fact, all of our SSSP algorithms simply repeatedly call (3) on specific edges.5

The other main idea in Dijkstra’s algorithm is to use a priority queue to implement a variant of
GraphSearch (Algorithm 1). A priority queue is a data structure that stores a set S of objects
from a universe Ω, with associated values in R. We only require that a priority queue has three
operations: Insert, Delete, and ExtractMin. The first two operations work as you would expect:
they add or remove a specified object from the set (we will only call Delete on elements already
present). The third operation specifically deletes the lowest-value object from the set.

There are various priority queue implementations with different tradeoffs. We use a Heap, which
implements all of Insert, Delete, and ExtractMin in O(log(n)) time, as reviewed in Section 7.2, Part I
of the notes. We use the following notation, slightly different than Section 7.2, Part I: Insert(x, val)
inserts x ∈ Ω with value val ∈ R, Delete(x) removes the object x (and its value) from the Heap, and
ExtractMin deletes the minimum-value object. It is straightforward to modify the implementation
in Section 7.2, Part I to provide this functionality, e.g., by storing addresses of all vertices explicitly
and only manipulating values. We also denote the value of an object x by x.val, which we can
query in O(1) time for a given x. We can now describe Dijkstra’s algorithm in Algorithm 6.

Algorithm 6 is very similar in spirit to Algorithm 2; in fact, it is arguably simpler. One main
difference is that we do not explicitly need to write down our distance labels in D until a vertex
u has already exited the Heap, at which point its current value u.val is permanently recorded as
its distance from s in Line 10. Until that point, we keep track of distance labels directly using the
Heap, i.e., the distance label of u is u.val. Otherwise, the main distinctions between Algorithms 6
and 2 are that Algorithm 6 starts by adding all vertices to its maintained set, that it uses a Heap
rather than a Queue to remove vertices, and that it handles weighted edges.

We claim that Algorithm 6 runs in O((m+n) log(n)) time. This is because we only extract vertices
from the Heap and never add them back, so Line 9 only runs n times, requiring O(n log(n)) time
in total. Similarly, a loop of Lines 11 to 16 only happens once for each edge (u, t), because it runs
when u is extracted from the Heap. Thus, all loops take O(m log(n)) time in total. We remark

4Our algorithm extends easily to zero-weight edges too, by just removing them before running the algorithm.
5This is even the case for the unweighted and DAG SSSP algorithms we have already seen.
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Algorithm 6: SSSPPositive(G, s)

1 Input: G = (V,E,w), a graph with w ∈ RE
>0, s ∈ V , a source vertex that can reach all of V

2 S ← Heap.Init({}, n)
3 D ← Array.Init(n)
4 for v ∈ V \ {s} do
5 S.Insert(v,∞)
6 end
7 S.Insert(s, 0)
8 while |S| > 0 do
9 u← S.ExtractMin()

10 D[u]← u.val
11 for (u, t) ∈ E do

// Equivalently, this loop relaxes the edge (u, t), i.e., it updates t.val← min(t.val, u.val+w(u,t)).
12 if u.val + w(u,t) < t.val then
13 S.Delete(t)
14 S.Insert(t, u.val + w(u,t))

15 end
16 end
17 end
18 return D

that for graphs where all vertices are reachable from the source, O((m+n) log(n)) = O(m log(n)),
because m ≥ n− 1 (the undirectification of the graph must at least be connected).

It remains to prove correctness. To do so, we use the notion of relaxing tense edges (3).

Lemma 5. Let D be the output of Algorithm 6 on directed graph G = (V,E) and s ∈ V . Then for
all t ∈ V , D[t] = d(s, t) is the shortest path distance between s and t, as defined in (1).

Proof. We proceed by induction on the number of vertices that have been extracted from the heap.
The first time Line 9 is called, the only non-infinity value is s.val = 0, so s is extracted and D[s]
is updated to 0. Thus the base case is correct because d(s, s) = 0, as all weights are positive.

Next, suppose we have extracted k vertices so far, denoted Vk := {v1 = s, v2, . . . , vk} (so that vi
is the ith vertex extracted), and that all of their distance labels are correct, i.e., D[vi] = d(s, vi)
for all i ∈ [k]. We want to claim that vk+1, the Heap vertex with the lowest current value, has
vk+1.val = d(s, vk+1), as this would complete the induction. For simplicity, let t := vk+1.

At the time when all of Vk has been extracted, the value of every vertex v in the Heap is

v.val = min
i∈[k]

(vi,v)∈E

{
d(s, vi) + w(vi,v)

}
. (4)

Here the above value is defined as ∞ if there are no (vi, v) ∈ E for i ∈ [k]. The formula (4) is true
by construction: if there are no incoming edges from Vk, then v.val is never updated on (14), and
otherwise, we repeatedly add vi.val+w(vi,v) to the running minimum comparison on Line 14, each
time a vi is extracted that has an edge to v. By our inductive hypothesis, each vi.val = d(s, vi).

Finally we can complete the proof. Consider some s-t path, and suppose for contradiction that it
has strictly less total weight than t.val as given in the formula (4). This path must cross from the
set Vk to the set V \Vk at some point, because s ∈ Vk and t ∈ V \Vk. Let us suppose the first time
this happens, it crosses from vi to u ∈ V \ Vk by taking the edge (vi, u). Then the path must go
from s to vi, from vi to u using an edge, and then from u to t. Thus the total length of the path is

≥ d(s, vi) + w(vi,u) + d(u, t) ≥ u.val + d(u, t) ≥ t.val,

a contradiction. The second inequality used (4) to upper bound u.val, and the third inequality
used d(u, t) ≥ 0 and that t.val is minimal among all v ∈ V \ Vk, because t was extracted. We
remark that the third inequality is the only place that positivity of edge weights is used.
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This shows that no s-t path can have smaller total weight than t.val, so d(s, t) ≥ t.val. However,
because we obtained t.val by relaxing edges, our earlier argument (2) shows t.val is an overestimate
of d(s, t) throughout the algorithm, so d(s, t) ≤ t.val. In conclusion, we have established d(s, t) =
t.val, i.e., the (k + 1)th recorded distance is correct, and the induction is complete.

In conclusion, Dijkstra’s algorithm runs in O((m+n) log(n)) time and solves the SSSP problem on
graphs with positive edge weights. This runtime turns out to be improvable by using other data
structures to implement the priority queue needed by Algorithm 6. In particular, the Fibonacci
heap developed in [FT87] supports an extra operation called DecreaseKey, that runs in O(1) time
and can implement the entire loop of Lines 11 to 16. By using a Fibonacci heap to implement
Dijkstra’s algorithm, we can obtain an improved runtime of O(m + n log(n)).

3.2 Bellman-Ford
In this section, we finally tackle the SSSP problem in its full generality. As we discussed in Section
5.3, Part III, there is one caveat: we must assume that the input graph G = (V,E,w) has no
negative-weight cycles, i.e., a directed cycle C ⊆ E such that

∑
e∈C we < 0. At the end of the

section, we will show how to use our algorithm to verify that this assumption actually holds.

Let G = (V,E,w) have no negative-weight cycles, and let s ∈ V be a source vertex. As usual, we
assume we have already ran a reachability algorithm, e.g., Algorithm 3, to remove all vertices not
reachable from the source vertex s. Thus, assume for simplicity that all of V is reachable from s.
We claim that the following simple-to-describe algorithm, Algorithm 7, due to Bellman and Ford
(and in fact earlier proposed by Shimbel) [Shi55, For56, Bel58], optimally solves SSSP on G. In
short, Algorithm 7 simply relaxes every edge n− 1 times sequentially.

Algorithm 7: SSSP(G, s)

1 Input: G = (V,E,w), a graph with no negative-weight cycles, s ∈ V , a source vertex that
can reach all of V

2 D ← Array.Init(n)
3 for v ∈ V \ {s} do
4 D[v]←∞
5 end
6 D[s]← 0
7 for ` ∈ [n− 1] do
8 for (u, v) ∈ E do
9 D[v]← min

(
D[v], D[u] + w(u,v)

)
10 end
11 end
12 return D

It is clear that Algorithm 7 runs in O(mn) time, because each of the n− 1 loops of Lines 7 to 11
requires O(m) time. We now give a short proof of correctness. Consider making a two-dimensional
array S[v][`], indexed by v ∈ V and ` ∈ [n− 1], such that S[v][`] equals D[v] at the end of the `th

loop of Lines 7 to 11. Then the update in Lines 8 to 10 can be equivalently rewritten as

S[v][`] = min

(
S[v][`− 1], min

(u,v)∈E
S[u][`− 1] + w(u,v)

)
. (5)

We claim S[v][`] is the shortest path distance between s and v, restricted to paths of length ≤ `.
We essentially gave this argument already in Section 5.3, Part III, but we briefly reproduce it here.
The shortest s-v path of length ≤ ` either has length ≤ `− 1, or exactly k. In the latter case, if we
let u be the second-to-last vertex on the shortest path, then the path concatenates the edge (u, v)
to the shortest s-u path of length ≤ `− 1. Both cases are handled correctly by (5).

Finally, when Algorithm 7 terminates, it returns all of the values S[v][n− 1]. If G has no negative-
weight cycles, this is indeed the shortest path distance between s and v for all v ∈ V , because we
proved in Lemma 3, Part III that there always exists a shortest path with ≤ n− 1 edges.
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One useful corollary of Algorithm 7’s correctness in the absence of negative-weight cycles is that
it can be used to detect the presence of negative-weight cycles, as explained in the following.

Lemma 6. Let D be the output of Algorithm 7 on directed graph G = (V,E,w) (which may have
negative-weight cycles), and s ∈ V that can reach all of V . Then if any (u, v) ∈ E has

D[v] > D[u] + w(u,v), (6)

G has a negative-weight cycle, and otherwise, G has no negative-weight cycle.

Proof. We begin with the easier direction. Suppose G has no negative-weight cycle. Then we
claim (6) cannot happen at termination. This is because D[v] remains an overestimate of d(s, v)
throughout the algorithm, an invariant maintained by (2). Moreover, it is exactly equal to d(s, v)
at the end of the algorithm, as we argued earlier. However, (6) would mean that D[v] gets updated
to a strictly smaller value, contradicting that it stays an overestimate of d(s, v), i.e., (2).

Now suppose that G has a negative-weight cycle, C, which involves the vertices {v1, . . . , vk} in
that order. We claim that (6) must occur for some edge. Indeed, suppose (6) was false for every
edge, so in particular, it is false for all the cycle edges (vi−1, vi) for i ∈ [k], where we let v0 ≡ vk
for notational convenience. Then summing D[vi] ≤ D[vi−1] + w(vi−1,vi) for all i ∈ [k] yields∑

i∈[k]

D[vi] ≤
∑
i∈[k]

D[vi−1] +
∑
i∈[k]

w(vi−1,vi) =⇒ 0 ≤
∑
i∈[k]

w(vi−1,vi).

Here we used that the vertices showing up on both sides of the inequality are exactly the same, albeit
in a different order, so we can cancel their summations. Finally, the above inequality contradicts
that C is a negative-weight cycle, so (6) must have been true for some edge in C as claimed.

We thus have obtained an O(mn)-time algorithm to detect the presence of negative-weight cycles,
building off Algorithm 7. In particular, we can simply check (6) for every edge using the output.
This gives us an overhead of O(m) in the runtime, which does not dominate.

We remark that, as of very recently, Bellman-Ford is no longer the state-of-the-art algorithm
for SSSP. For graphs with polynomially-bounded edge weights (i.e., integer weights in the range
[−poly(n), poly(n)]), recent breakthroughs by [BNW22, BCF23] gave an O(m log3(n) log log(n))-
time algorithm for SSSP. In the real RAM model where weights are allowed to be arbitrary, another
breakthrough improved upon Bellman-Ford for the first time in over 60 years: [Fin24] solves SSSP
in ≈ O(mn

8
9 ) time up to logarithmic factors, now improved to ≈ O(mn

4
5 ) time [HJQ24].

4 Flows and cuts
In this section, we introduce the maximum flow (maxflow) and minimum cut (mincut) problems.
Algorithms for these problems are some of the most powerful tools on graphs, and have many
downstream applications due to the variety of problems that can be reformulated as maxflow
or mincut instances. Moreover, the close relationship between these two problems serves as an
excellent introduction to concepts in continuous algorithms, the subject of our next unit.

4.1 Definitions
We begin by defining the maximum flow and minimum cut problems.

Flows. Let G = (V,E, c) be a directed graph, such that every edge e ∈ E has a positive capacity
ce > 0. We say f ∈ RE

≥0 is a flow if it assigns nonnegative values to each edge; the flow on
e = (u, v) ∈ E intuitively represents an amount of material to be sent from vertex u to v.

We say that a flow f ∈ RE
≥0 is feasible if it respects the capacity constraints, i.e., for all e ∈ E, we

have 0 ≤ fe ≤ ce. We denote the total amount of flow that a vertex v ∈ V produces by

∂f(v) :=
∑

(v,u)∈E

f(v,u) −
∑

(u,v)∈E

f(u,v).
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That is, ∂f(v) sums up all flows that v produces, and subtracts all flows consumed by v. We call
∂f(v) the net flow at v. One simple observation is that the sum of all net flows always vanishes:∑

v∈V
∂f(v) =

∑
v∈V

∑
(v,u)∈E

f(v,u) −
∑
v∈V

∑
(u,v)∈V

f(u,v)

=
∑
e∈E

fe −
∑
e∈E

fe = 0.
(7)

Here we used that every edge e ∈ E enters and leaves exactly one vertex each.

Fix two vertices s, t ∈ V of interest, where s is a source vertex and t 6= s is a sink vertex. We say
that a flow f is an s-t flow if ∂f(v) = 0 for all v ∈ V \ {s, t}. In other words, in an s-t flow, the net
flow at every vertex except the source s and sink t is 0. In light of (7), we additionally have that
∂f(s) = −∂f(t). Thus, we can think of an s-t flow as transporting a ∂f(s) = −∂f(t) total amount
of material from s to t, while every other vertex produces (and receives) no net material.

In the s-t maximum flow problem, or s-t maxflow for short, we are given as input G = (V,E, c),
and s, t ∈ V with s 6= t. Our goal is to compute the largest ∂f(s) achievable by a feasible s-t flow:

max
f∈RE

≥0

∂f(s) subject to fe ≤ ce for all e ∈ E, and ∂f(v) = 0 for all v ∈ V \ {s, t}. (8)

Throughout this section, when discussing s-tmaxflows or s-tmincuts (which we will define shortly),
we always assume that t is reachable from s, or else the problem is not well-defined.

Cuts. Again, let G = (V,E, c) be a directed graph with specified edge capacities c ∈ RE
≥0. For

any subset of vertices S ⊆ V , we let cut(S) denote the total amount of edge capacity crossing from
S over to its complement, V \ S. That is, we define

cut(S) :=
∑

(u,v)∈E
u∈S,v 6∈S

c(u,v). (9)

If S = ∅ or S = V , we let (9) (which is the empty sum) evaluate to 0.

In the s-t minimum cut problem, or s-t mincut for short, we are again given G = (V,E, c) and
s, t ∈ V with s 6= t. Our goal is to compute the minimum possible value of cut(S) for an S
containing s but not t, i.e., following the definition (9),

min
S⊆V

cut(S) subject to s ∈ S, t 6∈ S. (10)

Intuitively, (10) asks for the cheapest way to cut edges (with costs c) that separates s from t.

Historical note. The s-t maximum flow problem was first formulated by [HR54] in a classified
report, where they used a 44-vertex directed graph to model a Soviet road network during the Cold
War. Each edge on the network had an associated capacity, representing the rate at which material
could travel across a road. This report was only declassified in 1999 at the request of Alexander
Schrijver, and is discussed in a broader historical context by the subsequent article [Sch05].

In fact, Harris and Ross [HR54] were interested in the maximum flow problem for darker reasons:
their aim was to determine the minimum amount of damage that needed to be done to the network
in order to disconnect it. This is a mincut problem. As we will see in the following Section 4.2, s-t
maxflow and s-t mincut are essentially the same problem, a fact which Harris and Ross exploited
to devise an algorithm to solve their mincut problem on their instance.

4.2 Maxflow-mincut theorems
The punchline of this section is that for any graph G = (V,E, c), and any vertices s, t ∈ V with
s 6= t, (8) and (10) are equal. This fact, Theorem 1, is the (strong) maxflow-mincut theorem.

As a warmup, we prove the weak maxflow-mincut theorem: that the s-t maxflow is at most the
s-t mincut. This has a clear intuition: let S be the set witnessing (10). If you want to send some
amount F of material from s to t, it has to at least cross over from S to V \ S. The total amount
of capacity available for material to cross over is exactly cut(S), so F ≤ cut(S).
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More formally, we have that for any feasible s-t flow f ,

∂f(s) =
∑
u∈S

∂f(u) =
∑
u∈S

∑
(u,v)∈E

f(u,v) −
∑
u∈S

∑
(v,u)∈E

f(v,u)

=
∑

(u,v)∈E
u∈S,v 6∈S

f(u,v) −
∑

(v,u)∈E
u∈S,v 6∈S

f(v,u) ≤
∑

(u,v)∈E
u∈S,v 6∈S

c(u,v) = cut(S).
(11)

The second line used that any edge with both endpoints in S shows up twice and thus cancels, by
an argument similar to (7). The only inequality used the constraints 0 ≤ fe ≤ ce for all e ∈ E. By
applying the above to the f achieving the s-t maxflow, we have the weak maxflow-mincut theorem.

What is remarkable is that every inequality used in the above proof must be tight for the strong
maxflow-mincut theorem to be true. That is, it must be the case that for the f achieving the
maxflow, and some set S ⊆ V , both of the following criteria are true.

• For all (u, v) ∈ E with u ∈ S and v 6∈ S, the edge is saturated with flow: f(u,v) = c(u,v).

• For all (v, u) ∈ E with u ∈ S and v 6∈ S, the edge has no flow: f(v,u) = 0.

Indeed, we will produce an f and S with these properties in the proof of the strong maxflow-mincut
theorem, Theorem 1. We do so by giving a precise characterization of the relationship between the
s-t maxflow and the s-t mincut, through the language of residual graphs.

In particular, let f be a feasible flow in G = (V,E, c). We define the residual graph Gf as follows.

• For every edge e = (u, v) ∈ E with 0 < fe < ce, we add two edges (u, v) and (v, u) in Gf ,
with capacities ce − fe and fe respectively. Both of these values lie in the range (0, ce).

• For every edge e = (u, v) ∈ E with fe = 0, we only include an edge (u, v) with capacity ce.

• For every edge e = (u, v) ∈ E with fe = ce, we only include an edge (v, u) with capacity ce.

Intuitively, the residual graph represents the fact that we can continue to send ce− fe units of flow
forward, or fe units of flow backward, along each edge e ∈ E to remain feasible. It thus represents
the sorts of flows we can add to a current flow f to potentially improve its flow value.

Theorem 1. For any G = (V,E, c), and s, t ∈ V with s 6= t, (8) and (10) have the same value.

Proof. We already know from (11) that the s-t maxflow is at most the s-t mincut. It thus suffices
to provide a feasible flow f and a set S ⊆ V with s ∈ S, t 6∈ S, such that

∂f(s) = cut(S). (12)

This implies the s-t maxflow is at least the s-t mincut, which concludes the proof.

We now show (12) holds when f achieves the s-t maxflow. We claim that t is not reachable from
s in Gf . If this is true, let S be the component reachable from s, so that t 6∈ S.

For every edge (u, v) with u ∈ S, v 6∈ S, i.e., from S to its complement, it must be the case that the
forward edge (u, v) does not exist in the residual graph Gf . By our earlier definition, this can only
happen if f(u,v) = c(u,v), as in the other two cases the edge (u, v) exists with a positive capacity.

We follow a similar argument for every edge (v, u) with u ∈ S, v 6∈ S. i.e., from the complement
of S to S. It must be that these edges have zero flow, f(v,u) = 0, or else the edge (u, v) would exist
in Gf , which connects S to its complement, a contradiction to how we defined S.

We now have a flow f such that the two criteria we outlined after (11) both hold. Thus every
inequality in (11) is tight. We thus have a feasible f and S that separates s from t, such that
∂f(s) = cut(S). This satisfies the criteria for (12) to hold, which was our goal.

It remains to establish our claim that t is not reachable from s in the residual graph Gf . Suppose
otherwise for contradiction. Let P be an s-t path in Gf , and let w > 0 be the width of P , i.e.,
the minimum capacity along the path. Intuitively, we can think of w as capturing the bottleneck
capacity of the path, because w is the most flow we can send along P without becoming infeasible.

It turns out that merely the fact that w > 0 is enough. Consider sending w additional units of
flow from s to t along the path P . Formally, this modifies our maxflow f edgewise to a new flow
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f ′ as follows: for each forward edge (u, v) ∈ P such that (u, v) ∈ E, we let f ′(u,v) ← f(u,v) + w, and
for each backward edge (v, u) ∈ P such that (u, v) ∈ E, we let f ′(u,v) ← f(u,v) − w.

By construction, f ′ is still a feasible s-t flow, and it has larger flow value: ∂f ′(s) = ∂f(s)+w > ∂f(s).
This contradicts that f achieves the s-t maxflow. Hence, t is not reachable from s as claimed.

4.3 Maxflow algorithms
One amazing property of our proof of Theorem 1 is that it proceeds by running an algorithm. In
particular, define P to be an s-t augmenting path if it is an s-t path in a residual graph Gf . By
examining the proof of Theorem 1, we can conclude that it shows the following.

Corollary 1. Let f be a feasible flow in G = (V,E, c), and let P be an s-t augmenting path in Gf

with width w > 0. Then, we can construct a feasible flow f ′ with ∂f ′(s) = ∂f(s) +w in O(m) time.

This gives rise to the following generic Algorithm 8 for solving s-t maxflow. We focus on maxflow
algorithms in this section because given an s-t maxflow f , it is simple to recover an s-t mincut S:
by Theorem 1, we should let S be the component of the residual graph Gf reachable from s.

Algorithm 8: Maxflow(G, s, t)

1 Input: G = (V,E), a graph, s ∈ V , a source vertex, t ∈ V , a sink vertex
2 f ← all-zeroes vector in RE

3 while t is reachable from s in Gf do
4 P ← s-t path in Gf

5 w ← width of P
6 for (u, v) ∈ P do
7 if (u, v) ∈ E then
8 f(u,v) ← f(u,v) + w
9 end

10 else
11 f(v,u) ← f(v,u) − w
12 end
13 end
14 end
15 return f

Just as BFS and DFS are applications of our generic graph search algorithm that repeatedly
explores an unexplored vertex, and Dijkstra and Bellman-Ford are applications of our generic
SSSP algorithm that repeatedly relaxes a tense edge, Algorithm 8 presents a generic way of solving
maxflow problems. The only degree of freedom is in how to choose the augmenting path P on
Line 4. We present several different algorithms in this section that make different choices of P .

For simplicity, in the remainder of this section we assume that we have already eliminated any
vertices in G not reachable from s, as they will not be used in any s-t path. These vertices can be
found via a graph search algorithm. The remaining graph has at least m ≥ n − 1 = Ω(n) edges.
We use this assumption to simplify expressions, e.g., we have O(m + n) = O(m).

Any path. The original Ford-Fulkerson algorithm [For56, FF56] simply chooses P in each iteration
of Line 4 to be any augmenting path. This algorithm has a provable convergence rate when all of
the edge capacities c are positive integers; thus, let us make the assumption for now that c ∈ NE .
We also denote the s-t maxflow value by F ?. Clearly F ? is finite, as it equals the s-t mincut value,
which is bounded by the sum of edge capacities

∑
e∈E ce (and can be much smaller).

We first claim that F ? ∈ N. Consider running Algorithm 8 with any choice of P on Line 4. As
long as we preserve the invariant that all flow values fe are integers, all edge capacities in Gf also
remain integers, so the width w will be a positive integer. Thus, inductively f ∈ ZE always holds.
Each augmenting path adds at least w ≥ 1 to the flow value, and hence we must terminate in F ?

iterations. At termination, f achieves the s-t maxflow value and hence F ? = ∂f(s) ∈ N.

The same argument bounds the number of iterations of Algorithm 8 by F ?, so the runtime of
Algorithm 8 is F ? times the cost of running Lines 3 to 14. It is straightforward to implement these
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lines in O(m+n) = O(m) time, by running BFS or DFS in Line 4 and then manually passing over
the ≤ m edges of the path P . Thus the overall algorithm runs in time O(mF ?).

How satisfied should we be with this runtime? In some sense, it is not truly a polynomial in the
input length. If the edge capacities are specified as, say, b-bit integers, each capacity is upper
bounded by U = 2b, so a naïve bound on the s-t maxflow value is F ? ≤ mU . Thus in this case
the Ford-Fulkerson algorithm runs in O(m2U). However, the input length is ≈ mb = m log2(U),
so if m is small and U is large, the runtime is actually exponential in the input length. In practice,
F ? could be � mU , and hence can be treated as a parameter to the problem (similar to how
the target value V was a parameter in our subset sum runtime, in Section 3.3, Part III). For this
reason, we say that the Ford-Fulkerson algorithm runs in pseudopolynomial time.

Widest path. Can we improve upon this bound for the runtime of Ford-Fulkerson, by choosing
smarter paths in Line 4? One strategy is to set P to the widest s-t path in Gf . The intuition is
that we want to add the most flow value w in each iteration of Algorithm 8. In Homework III, we
show how to compute widest s-t paths in O((m + n) log(n)) = O(m log(n)) time.

Suppose that the s-t maxflow value is F ?, and at some loop of Lines 3 to 14, the current flow value
is F = ∂f(s). We claim that the s-t maxflow value in the residual graph Gf is F ? − F . This is
because Gf captures all ways we can add a flow to f while remaining feasible, and to produce an
s-t maxflow, we need to make up for the fact that ∂f(s) = F by adding an s-t flow in Gf with value
F ? − F . Conversely any larger flow in Gf would lead to a larger F ?, contradicting its definition.

Now, we claim that the widest path P in Gf has width w ≥ F?−F
m . In other words, it contributes

at least 1
m of the s-t maxflow value in Gf . To see why this is useful, it means that we can always

decrease the s-t maxflow value in Gf by a multplicative (1 − 1
m ) factor, via augmenting by P .

Therefore, after m log(F ?) loops of Lines 8 to 10, Gf has s-t maxflow value bounded by(
1− 1

m

)m log(F?)

· F ? ≤ exp (− log(F ?)) · F ? = 1.

Here we used the approximation (1 − 1
x )x ≤ exp(−1) for x ≥ 1, where exp is the exponential

function. At this point we can just run one more iteration of Ford-Fulkerson to disconnect the
residual graph. Thus the runtime of augmenting by the widest path is bounded by

O(m log(F ?) ·m log(n)) = O(m2 log(F ?) log(n)),

because we compute a widest path O(m log(F ?)) times. We remark that this “final augmentation”
argument still relies on the assumption that capacities are integers. We call the above runtime,
which depends polynomially on the bit complexity of the input, a weakly polynomial runtime.

We conclude by proving our claim that the widest path contributes a 1
m fraction of the maxflow

value. Our key tool is flow decomposition, which says any s-t flow can be decomposed into ≤ m
flows, each of which pushes flow along a single s-t path, or creates no net flow at any vertex.

Fact 1 (Flow decomposition). Every s-t flow f in G = (V,E, c) can be decomposed as f =
∑

i∈[k] fi

for flows {fi}i∈[k] ⊂ RE
≥0, where k ≤ m, and each fi satisfies one of the following.

• fi is a multiple of an s-t path P , i.e., for some w > 0, [fi]e = w for all e ∈ P .

• fi is a circulation, i.e., it has ∂fi(v) = 0 for all v ∈ V (including v ∈ {s, t}).

We defer a proof of Fact 1 to Chapter 10, [Eri24], but briefly sketch the intuition here. The idea
is to begin by making a graph where every edge has capacity fe. We then repeatedly find paths P
from s to t in the graph, and “peel off” one more s-t flow along P , with value set to the width of the
path. Such a flow is always feasible, and removing it eliminates an edge in the graph completely.
Recursing until ∂f(s) = 0 yields a circulation, which we peel off as the last component. This
process can only last m iterations, because each flow we peel off eliminates an edge.

Now consider the s-t maxflow in some residual graph Gf , and call it f ′. Fact 1 decomposes
f ′ =

∑
i∈[k] f

′
i ; each f ′i is either a s-t path or a circulation, and without loss, we can assume they

are all s-t paths, because subtracting circulations does not affect flow value. At least one of the f ′i
must contain a 1

k ≥
1
m fraction of the s-t maxflow value, so it has width ≥ 1

m of the value. The
widest path (which may not be one of the f ′i) can only have greater width, proving our claim.
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Modern developments. The s-tmaxflow problem and its variants have undergone an algorithmic
revolution in recent years, fueled by an interplay between combinatorial techniques, e.g., graph
decomposition, and continuous techniques that are better able to exploit the geometry of feasible
flow constraints. In particular, the s-t maxflow problem is now solvable in O(m1+o(1) log(U)) time
[CKL+22], if all edge capacities are integers in the range [1, U ]. This runtime is almost-optimal
among weakly polynomial time algorithms. The [CKL+22] result was the culmination of a long
line of developments that led to gradually faster flow algorithms over the past decade.

One could further insist on strongly polynomial runtimes. A strongly polynomial time algorithm
works in the real RAM model, where there are no bit complexity bounds, and all inputs are
treated as arbitrary real numbers. For example, in the real RAM model, there is no guarantee
that the widest path algorithm will terminate, because the residual graph could contain arbitrarily
small edge weights. The runtime of a strongly polynomial algorithm then counts the number of
arithmetic operations used on its real number inputs. The state-of-the-art strongly polynomial s-t
maxflow algorithm runs in time O(mn), by combining work of [KRT94, Orl13].

Finally, it is worth mentioning that these new s-t maxflow algorithms have since led to other
downstream breakthroughs. For example, it is now known how to compute all-pairs maxflows in
O(m1+o(1) log(U)) time, i.e., just as efficiently as a single s-t maxflow [ALPS23].

5 Applications
In this section we outline several creative applications and extensions of the graph algorithmic
toolkit that we have developed thus far, as a demonstration of its flexibility.

5.1 Arbitrage
Let G = (V,E,w) model an exchange network, where every vertex v ∈ V corresponds to a currency
(or, e.g., some type of good). Taking an edge from vertex u to v corresponds to exchanging currency
u for v, and w(u,v) represents the exchange rate: each unit of currency u will yield w(u,v) units of
currency v if traded. We assume that all exchange rates satisfy w(u,v) > 0.

We wish to detect whether a given exchange network is susceptible to arbitrage. In particular,
arbitrage is a way to start with 1 unit of some currency, make a sequence of exchanges, and end
up with more than 1 unit of the same currency. Due to rapid fluctuations in exchange rates, it is
important to detect the presence of potential arbitrage opportunities to either improve predictions
on how the market will act, or to make appropriate adjustments to rates.

To model this problem mathematically, what we are looking for is a cycle C, such that
∏

e∈C we >
1. To see this, if we follow the cycle edges around starting at a vertex v, then

∏
e∈C we is exactly

the amount of currency v we are left with after making all trades. This seems somewhat close to
a primitive we developed in Section 3.2, i.e., the ability to detect negative-weight cycles in O(mn)
time, save two differences: it concerns products (rather than sums), and thresholds at 1 (rather
than 0). It turns out that we can nonetheless use the Bellman-Ford negative-weight cycle detection
method to detect arbitrage in exchange networks, thanks to the following fact.

Fact 2. Let {wi}i∈[k] ⊂ R>0. Then
∏

i∈[k] wi > 1 iff
∑

i∈[k](− log(wi)) < 0.

Fact 2 shows that there is an arbitrage instance in G iff there is a negative-weight cycle in a
modified graph G′ = (V,E,w′), defined as follows: for every edge e ∈ E with edge weight we, we
give the same edge in G′ a weight of − log(we). Thus, we can detect arbitrage in O(mn) time.

5.2 Heuristics for s-t shortest path
We next give a more practical variant of Dijkstra’s SSSP algorithm (Algorithm 6). While Algo-
rithm 6 is quite fast, it does not terminate (as stated) until it has discovered all vertices. If we are
only interested in the shortest s-t path for some known target vertex t, rather than all shortest
paths from s, this could be inefficient; we only need to wait until Algorithm 6 labels t to terminate.
Thus, our goal is to make Algorithm 6 pull the vertex t out of its priority queue as soon as possible.

Consider for instance the behavior of Algorithm 6 in a two-dimensional grid, e.g., if a robot is
searching for the shortest path to a target object t in a room. In this case, Algorithm 6 is
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essentially performing a breadth-first search in the grid, because it pulls vertices out of the priority
queue in the order of their shortest distance from s. That is, its behavior is completely oblivious
to t, exploring vertices even if we know they are on the opposite side of s from t.

The A* algorithm [HNR68] is a modification of Dijkstra’s algorithm which uses a heuristic h :
V → R to help guide the search. Given a graph G = (V,E,w) and a heuristic h, we can define a
new graph G(h) = (V,E,w(h)) on the same vertices and edges, with modified edge weights

w
(h)
(u,v) := w(u,v) − h(u) + h(v). (13)

We call the heuristic h consistent if it ensures all modified weights w(h)
(u,v) remain nonnegative.

Why is this a good idea? We claim that no shortest paths change under the modification (13).
However, the shortest path distances can change, in a way that lets us discover the target t faster.

Lemma 7. For any v ∈ V \ {s}, P is an s-v shortest path in G(h) iff it is also an s-v shortest
path in G. In this case, the shortest path distance in G(h) is

∑
e∈P we − h(s) + h(v).

Proof. Fix an arbitrary s-v path P = {(v1 = s, v2), (v2, v3), . . . , (vk−1, vk = v)}. Its total weight
in G is

∑
e∈P we. On the other hand, its total weight in G(h) is, following (13),∑

e∈P
w(h)

e =
∑
e∈P

we + (h(v2)− h(v1)) + (h(v3)− h(v2)) + . . . + (h(vk)− h(vk−1))

=
∑
e∈P

we + h(vk)− h(v1) =
∑
e∈P

we + h(v)− h(s),

where we telescoped the edge weight modifications, and used that v1 = s, vk = v start and end the
path. Thus, the total weight of every s-v path changes by exactly the same amount, i.e., h(v)−h(s).
This proves that shortest s-v paths in G and G(h) are equivalent. The second conclusion follows
because the shortest s-v path, P , has its weight changed by h(v)− h(s) as argued earlier.

To provide some intuition on Lemma 7, we can view the heuristic h as a “price function,” modifying
edge weights such that leaving a vertex u saves h(u) in some currency, and entering a vertex v costs
h(v) of the currency. Lemma 7 restates the fact that in a path, every vertex that is entered is also
exited, except for the first and last. Thus, the total cost of every s-v path changes by h(v)− h(s).

If h is consistent (so all edge weights in G(h) are positive), Lemma 7 shows that running Algorithm 6
on G(h) will still discover all of the shortest s-v paths in G. The order in which they are discovered
depends on our choice of heuristic h, i.e., Lemma 7 shows that vertices v with smaller h(v) are
favored. To take advantage of this flexibility in the vertex discovery order, the idea is to design
our heuristic such that h(v) is large for vertices v ∈ V that we do not want to visit. However, we
want to do so in a way that does not violate consistency.

One way to design a consistent heuristic is to set h(t) = 0, and to set h(v) = m(v, t) for any metric
m, i.e., a distance function that satisfying the triangle inequality. Here we assume m(u, v) = w(u,v)

for any edge (u, v) ∈ E. The intuition is that this penalizes vertices far from t with a large h label,
so they are discovered later. For example, if all vertices are identified with vectors in Rd, then we
can set m(v, t) = ‖v − t‖2, where ‖·‖2 is the Euclidean norm (see Section 5.1, Part I for a review),
and v, t are the vectors associated with v, t respectively. Any metric yields a consistent heuristic:

w
(h)
(u,v) = w(u,v) − h(u) + h(v) = m(u, v)−m(u, t) + m(v, t) ≥ 0.

In summary, the main idea of A* is that if there is a consistent heuristic h available, penalizing ver-
tices far from a target t, then the modification (13) can speed up how quickly Dijkstra’s algorithm
discovers t. We note that the worst-case runtime of Dijkstra’s algorithm remains unchanged.

APSP. It turns out that A* can slightly improve the APSP runtime achieved by Floyd-Warshall
(Section 5.3, Part III), as long as the graph in question is not too dense. Let G = (V,E,w) be a
graph free of negative-weight cycles, that we want to solve APSP on. If G had only positive-weight
edges, we can do so in O(mn log(n)) time, by running Algorithm 6 from all n source vertices. On
the other hand, with negative-weight edges the best algorithm we have given is Floyd-Warshall,
which uses O(n3) time. This is worse if m = o( n2

log(n) ), i.e., G is moderately sparse.
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We claim that we can apply a heuristic modification of the form (13) such that all edge weights
become nonnegative. If we can compute a suitable heuristic h, the rest of the algorithm takes
O(mn log(n)) time, because we can then run Dijkstra n times on G(h). Our strategy is to use
h(v) = −d(s, v) for all v ∈ V , where d is the shortest path distance, and s is a vertex that can
reach all of G.6 We can compute all d(s, v) in O(mn) time, using Algorithm 7.

Now consider an edge (u, v) ∈ E. Its heuristically-modified edge weight (13) is

w
(h)
(u,v) = w(u,v) + d(s, u)− d(s, v) ≥ 0,

since we can get from s to v by taking the shortest s-u path and then (u, v), so d(s, v) cannot exceed
d(s, u) + w(u,v). Thus our heuristic creates nonnegative weights, and yields an O(mn log(n))-time
APSP algorithm. This method for computing APSP is called Johnson’s algorithm [Joh77].

5.3 Flow reductions
The s-t maxflow problem is one of the most powerful reduction tools in graph algorithm design.
The idea of a flow reduction is to take some problem on a graph G, and transform G into a different
graph G′, such that solving s-t maxflow on G′ yields a solution to our original problem on G.

Here, we outline some basic uses of this technique. However, flow reductions are quite general and
apply to many different graph problems, including maxflow with vertex capacities, tuple selection,
variants of scheduling, image segmentation, and more. We recommend Chapter 11, [Eri24] and
Chapters 7.5 to 7.13, [KT05], for an introduction to a (much) broader range of flow reductions.

Disjoint paths. One of the simplest flow reductions does not even require modifying the graph
G. Suppose we are given a directed graph G = (V,E), and we wish to compute the maximum
number of disjoint s-t paths we can find in G, where s 6= t are vertices in V . Here we say two
paths are disjoint if they do not share any edges in common.

It turns out that the disjoint paths problem is simply an instance of s-t maxflow. Let us give every
edge a capacity of 1, and let f be the s-t maxflow. As argued in Section 4.3, we can assume f
places an integer amount of flow on every edge, because the original capacities are integers. Thus,
f either puts 0 or 1 flow on every edge. We can then use flow decomposition (Fact 1) to repeatedly
peel off s-t paths from f ; all paths are disjoint, because each edge contains only one unit of flow.
The number of s-t paths returned by this process is thus the s-t maxflow value.

Bipartite matching. Another famous flow reduction is bipartite matching. Let G = (V,E) be
an unweighted bipartite graph. Here, G being bipartite means V can be partitioned into two sets,
V = L ∪R, such that every edge e = (u, v) ∈ E points from L to R, i.e., u ∈ L and v ∈ R.

A matching M is a subset of E such that each vertex participates in at most one edge. That is,
for each v ∈ R, there is at most one edge (u, v) ∈ M , and likewise for each u ∈ L. Our goal is to
compute the maximum matching size in G, i.e., the largest |M | achievable. In the stable matching
problem in Section 5, Part IV, the maximum matching size was n

2 because we could arbitrarily
pair up the n

2 vertices on the left with the n
2 vertices on the right. However, in bipartite graphs

where E does not contain every possible edge, such a large matching may not always exist.

We can solve bipartite matching using a flow reduction. At first, this seems surprising: bipartite
matching is about vertex capacities, not edge capacities, and there is not really a particular source
or sink vertex. Nonetheless, it turns out we can convert bipartite matching into a flow problem on
an augmented graph. In particular, consider forming a modified graph

G′ = (L ∪R ∪ {s, t}︸ ︷︷ ︸
:=V ′

, E ∪ {(s, u)}u∈L ∪ {(v, t)}v∈R︸ ︷︷ ︸
:=E′

),

such that every edge in G′ is assigned a capacity of 1. To explain our construction a bit more, G′
has two additional vertices compared to V : a “super-source” vertex s and a “super-sink” vertex t.
We also add directed edges going from s to every vertex in L, the left half of the bipartition, as
well as from every vertex in R, the right half of the bipartition, to t.

6If SCC(G) is not disconnected, then by Lemma 4, this is always achievable; choose s in a source component of
SCC(G). Otherwise, we can recurse on each connected piece of SCC(G) separately.
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We claim that the maximum matching size in G is the same as the s-t maxflow value in G′. Given
a matching M in G with |M | = k, we may extend it to a flow f on G′ achieving ∂f(s) = k: for each
edge (u, v) ∈M , place one unit of flow on each of the three edges in the s-t path {(s, u), (u, v), (v, t)}.
It is straightforward to check this is an s-t flow with value k. Further, f is a feasible flow in G′

because M is a matching; each edge of the form (s, u) and (v, t) is used at most once.

Conversely, suppose f , the s-t maxflow in G′, attains value ∂f(s) = k. As argued in Section 4.3,
we again may assume f ∈ ZE′ , i.e., f puts an integer amount of flow on each edge. Because edge
capacities in G′ are all 1, this means f only puts 0 or 1 units of flow edgewise.

We claim we can recover a matching of size k from f . To do so, we again repeatedly peel off s-t
paths; each removal of a path subtracts one unit from ∂f(s), so this process terminates after k
paths are removed. Each path is of the form {(s, u), (u, v), (v, t)} for some u ∈ L and v ∈ R, as
these are the only s-t paths in G′. Moreover each edge of the form (s, u) or (v, t) can only be used
by one path. Thus, if we only keep the edges in these paths that exist in the original graph G,
their union forms a matching, as each vertex in L∪R participates in a single path. This concludes
our proof that the maximum matching size in G is the s-t maxflow value in G′.
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Further reading
For more on Section 2, see Chapter 20, [CLRS22], or Chapters 5 to 6, [Eri24], or Chapter 3, [KT05],
or Chapter 8, [Rou22].

For more on Section 3, see Chapter 22, [CLRS22], or Chapter 8, [Eri24], or Chapter 4.4 and
Chapters 6.8 to 6.10, [KT05], or Chapters 9 and 18, [Rou22].

For more on Section 4, see Chapter 24, [CLRS22], or Chapter 10, [Eri24], or Chapters 7.1 to 7.4,
[KT05].

For more on Section 5, see Chapters 9 and 11, [Eri24], or Chapters 7.5 to 7.13, [KT05].
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